Cardioprotection by Controlling Hyperamylinemia in a “Humanized” Diabetic Rat Model

نویسندگان

  • Sanda Despa
  • Savita Sharma
  • Todd R. Harris
  • Hua Dong
  • Ning Li
  • Nipavan Chiamvimonvat
  • Heinrich Taegtmeyer
  • Kenneth B. Margulies
  • Bruce D. Hammock
  • Florin Despa
چکیده

BACKGROUND Chronic hypersecretion of the pancreatic hormone amylin is common in humans with obesity or prediabetic insulin resistance and induces amylin aggregation and proteotoxicity in the pancreas. We recently showed that hyperamylinemia also affects the cardiovascular system. Here, we investigated whether amylin aggregates interact directly with cardiac myocytes and whether controlling hyperamylinemia protects the heart. METHODS AND RESULTS By Western blot, we found abundant amylin aggregates in lysates of cardiac myocytes from obese patients, but not in controls. Aggregated amylin was elevated in failing hearts, suggesting a role in myocyte injury. Using rats overexpressing human amylin in the pancreas (HIP rats) and control myocytes incubated with human amylin, we show that amylin aggregation at the sarcolemma induces oxidative stress and Ca(2+) dysregulation. In time, HIP rats developed cardiac hypertrophy and left-ventricular dilation. We then tested whether metabolites with antiaggregation properties, such as eicosanoid acids, limit myocardial amylin deposition. Rats were treated with an inhibitor of soluble epoxide hydrolase, the enzyme that degrades endogenous eicosanoids. Treatment doubled the blood concentration of eicosanoids, which drastically reduced incorporation of aggregated amylin in cardiac myocytes and blood cells, without affecting pancreatic amylin secretion. Animals in the treated group showed reduced cardiac hypertrophy and left-ventricular dilation. The cardioprotective mechanisms included the mitigation of amylin-induced cardiac oxidative stress and Ca(2+) dysregulation. CONCLUSIONS The results suggest blood amylin as a novel therapeutic target in diabetic heart disease and elevating blood levels of antiaggregation metabolites as a pharmacological strategy to reduce amylin aggregation and amylin-mediated cardiotoxicity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hyperamylinemia contributes to cardiac dysfunction in obesity and diabetes: a study in humans and rats.

RATIONALE Hyperamylinemia is common in patients with obesity and insulin resistance, coincides with hyperinsulinemia, and results in amyloid deposition. Amylin amyloids are generally considered a pancreatic disorder in type 2 diabetes. However, elevated circulating levels of amylin may also lead to amylin accumulation and proteotoxicity in peripheral organs, including the heart. OBJECTIVE To ...

متن کامل

Hyperamylinemia Increases IL-1β Synthesis in the Heart via Peroxidative Sarcolemmal Injury

Hypersecretion of amylin is common in individuals with prediabetes, causes amylin deposition and proteotoxicity in pancreatic islets, and contributes to the development of type 2 diabetes. Recent studies also identified amylin deposits in failing hearts from patients with obesity or type 2 diabetes and demonstrated that hyperamylinemia accelerates the development of heart dysfunction in rats ex...

متن کامل

Integrative Physiology Hyperamylinemia Contributes to Cardiac Dysfunction in Obesity and Diabetes A Study in Humans and Rats

Rationale: Hyperamylinemia is common in patients with obesity and insulin resistance, coincides with hyperin-sulinemia, and results in amyloid deposition. Amylin amyloids are generally considered a pancreatic disorder in type 2 diabetes. However, elevated circulating levels of amylin may also lead to amylin accumulation and proteotoxicity in peripheral organs, including the heart. Objective: To...

متن کامل

Oleuropein cardioprotection effect against oxidative stress in Streptozotocin-induced diabetic male rats

Introdution: Diabetes is the most common endocrine disorder characterized by hyperglycemia. Increasing the oxidative stress and changing the amount of antioxidants play important roles in pathogenesis of diabetes. Nowadays to control diabetes and its complications, the use of herbal drugs is considered widely. In this study, we investigated the effect of oleuropein on antioxidant enzymes activi...

متن کامل

Possible involvement of caveolin in attenuation of cardioprotective effect of ischemic preconditioning in diabetic rat heart

BACKGROUND Nitric oxide (NO) has been noted to produce ischemic preconditioning (IPC)-mediated cardioprotection. Caveolin is a negative regulator of NO, which inhibits endothelial nitric oxide synthase (eNOS) by making caveolin-eNOS complex. The expression of caveolin is increased during diabetes mellitus (DM). The present study was designed to investigate the involvement of caveolin in attenua...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2014